Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA

نویسندگان

  • Wei Li
  • Ashesh A. Saraiya
  • Ching C. Wang
چکیده

Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

snoRNA, a Novel Precursor of microRNA in Giardia lamblia

An Argonaute homolog and a functional Dicer have been identified in the ancient eukaryote Giardia lamblia, which apparently lacks the ability to perform RNA interference (RNAi). The Giardia Argonaute plays an essential role in growth and is capable of binding specifically to the m(7)G-cap, suggesting a potential involvement in microRNA (miRNA)-mediated translational repression. To test such a p...

متن کامل

Stem-Loop RT-qPCR as an Efficient Tool for the Detection and Quantification of Small RNAs in Giardia lamblia

Stem-loop quantitative reverse transcription PCR (RT-qPCR) is a molecular technique used for identification and quantification of individual small RNAs in cells. In this work, we used a Universal ProbeLibrary (UPL)-based design to detect-in a rapid, sensitive, specific, and reproducible way-the small nucleolar RNA (snoRNA) GlsR17 and its derived miRNA (miR2) of Giardia lamblia using a stem-loop...

متن کامل

Transition of a microRNA from Repressing to Activating Translation Depending on the Extent of Base Pairing with the Target

MicroRNAs are major post-transcriptional regulators of gene expression. Here we show in the ancient protozoan Giardia lamblia a snoRNA-derived 26-nucleotide microRNA, miR3, which represses the translation of histone H2A mRNA containing an imperfect target but enhances translation when the target is made fully complementary. A stepwise mutational analysis of the fully complementary target showed...

متن کامل

Cellular response to ionizing radiation: A microRNA story

MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that mi...

متن کامل

MicroRNA biology in fungi

RNA processing is essential factor for synthesis of functional and structural proteins in eukaryote cells. In eukaryote organisms it will be initiated with transcription of DNA in nucleolus and terminated to mRNA translation in cytoplasm, finally mRNA degraded. Protein synthesis followed as different steps, includes 5' capping, poly adenylating, processing and transferring from nucleolus to cyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011